Abstract

In some practical quantum physical architectures, the qubits need to be distributed on 2-dimensional (2-D) grid structure to implement quantum computation. In order to map an 1-dimensional (1-D) quantum circuit into a 2-D grid structure and satisfy the nearest neighbor constraint of qubit interaction in the grid structure, a mapping method from 1-D quantum circuit to 2-D grid structure is proposed in this paper. This method firstly determines the order of placing qubits, and then presents the layout strategy of qubits in 2-D grid. We also proposed an algorithm for establishing interaction paths between non-adjacent qubits in 2-D grid structure, which can satisfy the physical constraints of the interaction of quantum bits in the grid in the process of mapping an 1-D quantum circuit to a 2-D grid structure. For some benchmark circuits, after using the method of this paper to place qubits, it is possible to make every 2-qubit gate in the circuit have a nearest neighbor, so that there is no need to use SWAP gate to establish channel routing. Compared with the latest available methods, the average optimization rate is 82.38%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.