Abstract

Aims. We present a new method for the treatment of the advection of solar supergranulation by giant cells, a large-scale analogue to the observed property of granule advection by supergranules. Methods. The proposed method is derived from a description of solar convection via spherical harmonics and spectral coefficients, allowing the investigation of the influence of a giant cell component on a realistic supergranule signal. Results. We show that a supergranule pattern derived from real data, as well as a simplified test signal, can be advected by a giant cell component of various sizes. Conclusions. The identified behaviour is in analogy to observed supergranulation patterns, including those based on MDI Dopplergrams, which show wavelike supergranulation patterns, even after the removal of the geometric projection effect. Our method is an important step towards the construction of future models involving supergranule flow patterns advected by a giant cell flow. Nevertheless, additional efforts are required to obtain a final verification of giant cells as a separate component of the solar photospheric convection spectrum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.