Abstract
В данной работе метод опорных функций модифицируется для решения основных краевых задач для самосопряжённого дифференциального оператора в областях произвольной формы. Метод основывается на методе функций Грина и кратных преобразованиях Фурье
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Novorossiysk Branch of the Belgorod V. G. Shukhov State Technological University. Series: Mechanics and Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.