Abstract

We induced radio frequency (RF) lesions in the neuronal pathway leading from the forebrain to the pontine micturition center (PMC) to produce a rat model of bladder overactivity. We studied the effects of gamma-aminobutyric acid agonists (diazepam and baclofen) and glutamate receptor antagonists (MK-801 maleate and GYKI52466 [1-(4-aminophenyl-D-4-methyl-7,8 methylenedioxy-5H-2,3-benzodiazepine] hydrochloride) on the cystometrogram and developed a possible explanation of the neuronal mechanisms underlying RF lesion induced bladder overactivity. Seven-week-old male Sprague-Dawley rats were anesthetized with sodium pentobarbital and RF lesions were produced in the nuclei basalis. Five days later bladder contractions were induced by infusing fluid into the bladder and cystometrograms were measured in conscious rats. The micturition interval (MI) in rats subjected to RF lesioning was significantly shorter than that in sham operated control rats. Diazepam (0.1 and 1 mg/kg intraperitoneally), baclofen (1 mg/kg intravenously) and MK-801 (0.1 and 1 mg/kg intravenously) did not change or shortened MI in control rats but it prolonged MI in lesioned rats. GYKI52466 (0.5 and 1 mg/kg intravenously) weakly prolonged MI in lesioned rats. We consider that RF lesioning causes interruption of the inhibitory GABAergic neurons that lead from the forebrain to the PMC. This results in the activation of N-methyl-D-aspartate receptors in the PMC that are involved in the facilitation of voiding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.