Abstract

A method is described for measuring bioreduction of hydroxyethyl disulfide (HEDS) or α-lipoate by human A549 lung, MCF7 mammary, and DU145 prostate carcinomas as well as rodent tumor cells in vitro. Reduction of HEDS or α-lipoate was measured by removing aliquots of the glucose-containing media and measuring the reduced thiol with DTNB (Ellman's reagent). Addition of DTNB to cells followed by disulfide addition directly measures the formation of newly reduced thiol. A549 cells exhibit the highest capacity to reduce α-lipoate, while Q7 rat hepatoma cells show the highest rate of HEDS reduction. Millimolar quantities of reduced thiol are produced for both substrates. Oxidized dithiothreitol and cystamine were reduced to a lesser degree. DTNB, glutathione disulfide, and cystine were only marginally reduced by the cell cultures. Glucose-6-phosphate deficient CHO cells (E89) do not reduce α-lipoate and reduce HEDS at a much slower rate compared to wild-type CHO-K1 cells. Depletion of glutathione prevents the reduction of HEDS. The depletion of glutathione inhibited reduction of α-lipoate by 25% and HEDS by 50% in A549 cells, while GSH depletion did not inhibit α-lipoate reduction in Q7 cells but completely blocked HEDS reduction. These data suggest that the relative participation of the thioltransferase (glutaredoxin) and thioredoxin systems in overall cellular disulfide reduction is cell line specific. The effects of various inhibitors of the thiol–disulfide oxidoreductase enzymes (1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), arsenite, and phenylarsine oxide) support this conclusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.