Abstract
AbstractAssessing the potential of proposed urban wind installations is hindered by insufficient assessments of both urban wind resource, and the effectiveness of commercial gust control solutions within built up areas. Evaluating the potential performance of wind turbines within the urban environment requires an estimation of the total energy that would be available to them were effective control systems to be used. This paper presents a methodology for estimating the excess energy content (EEC) present in the gusty urban wind, which is usually under represented when using assessments based only on mean wind speeds. The method is developed using high temporal resolution wind measurements from eight potential turbine sites within the urban and suburban environment. By assessing the relationship between turbulence intensities and the EEC, an analytical methodology for predicting the total wind energy available at a potential turbine site is proposed. Sensitivity analysis with respect to temporal data resolution on the predicted EEC is also demonstrated. The methodology is then integrated with an analytical methodology that was initially developed to predict mean wind speeds at different heights within a UK city based on detailed mapping of its aerodynamic characteristics. Additional estimates of turbulence intensities and EEC based on the current methodology allow a more complete assessment of the wind resource available. The methodology is applied to the UK city of Leeds as a case study and the potential to map turbulence intensities and the total kinetic energy available at different heights within a typical urban city is demonstrated. Copyright © 2015 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.