Abstract
ABSTRACT Proximity ligation assay (PLA) is an immunofluorescence assay, which determines in situ interaction of two biomolecules present within 40 nm close proximity. Here, we describe a modification of PLA for visual detection of in situ protein interactions with nascent RNA in a single cell (IPNR-PLA). In IPNR-PLA, nascent RNA is labeled by incorporating 5-fluorouridine (FU), a uridine nucleotide analogue, followed by covalent cross-linking of the interacting partners in proximity to newly synthesized RNA. By using combination of anti-BrdU antibody, which specifically binds to FU, and primary antibody against a protein of interest, the IPNR reaction results in fluorescent puncta as a positive signal, only if the candidate proteins are in proximity to nascent RNA. We have validated this method by demonstrating known CDK9 and elongating RNA pol II interaction with nascent RNA. Finally, we used this method to test for the presence of DNA double strand breaks as well as Poly (ADP-ribose) polymerase 1 (PARP1), an RNA binding protein, in the vicinity of nascent RNA in cancer cells. The capability of performing parallel IF labeling and quantifiable multiparameter measurements within heterogeneous cell populations makes IPNR-PLA very attractive for use in biological studies. Overall, we have developed the IPNR-PLA method for analysis of protein association with nascent RNA with single-cell resolution, which is highly sensitive, quantitative, efficient, and requires little starting experimental material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.