Abstract

Adoptive cell therapy with genetically modified regulatory T cells (Tregs) is under clinical investigation for the treatment of transplant rejection and various autoimmune conditions. A limitation of modelling this approach in mice is the lack of optimized protocols for expanding and transducing mouse Tregs. Here we describe a protocol for purifying, expanding and retrovirally transducing mouse Tregs with a vector encoding a chimeric antigen receptor as a model transgene. We found that isolation of Tregs from C57Bl/6J Foxp3EGFP mice solely based on eGFP expression resulted in sufficiently pure cells; co-sorting of CD25hi cells was not essential. Although expansion with rapamycin reduced Treg expansion, it promoted maximal in vitro suppressive activity. Retroviral transduction of Tregs following 2 days of stimulation with anti-CD3/CD28 beads achieved a transduction efficiency of ~40% and did not impair their suppressive capacity. When injected into a conventional T cell (Tconv)-transfer-induced colitis model, transduced Tregs inhibited colitis progression at ratios as low as 1 Treg to 100 Tconvs, and maintained Foxp3 and transgene expression throughout an 8-week period. This method facilitates the study of transduced Tregs in animal models and will enable the study of genetically engineered Treg therapy for a variety of inflammatory diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.