Abstract

We propose here a method for compensating the Joule-heating effects in the current-induced domain wall motion (CIDWM). In CIDWM experiments, the current induces not only the spin-transfer torque (STT) effects but also the Joule-heating effects, and both effects influence the domain wall (DW) motion. It is thus desired to develop a way to compensate the Joule-heating effects, in order to determine the pure STT effects on the DW motion. Up to now, in studies of DW creeping motions, such Joule-heating effects have been eliminated based on the Arrhenius law by assuming the temperature-independent creep scaling constants. However, here we find that such scaling constants are sensitive to the temperature, from the DW creeping experiment in Pt/Co/Pt wires with temperature control in a cryostat. By accounting the temperature dependence of the scaling constants, we demonstrate that all the DW speeds with various temperatures are exactly collapsed onto a single universal curve, which enables us to examine the pure STT effects on the DW motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.