Abstract

Chlorophyll-a (Chl-a) is an important parameter in water bodies. Due to the complexity of optics in water bodies, it is difficult to accurately predict Chl-a concentrations in water bodies by current traditional methods. In this paper, using Sentinel-2 remote sensing images as the data source combined with measured data, taking Wuliangsu Lake as the study area, a new intelligent algorithm is proposed for prediction of Chl-a concentration, which uses the adaptive ant colony exhaustive optimization algorithm (A-ACEO) for feature selection and the gray wolf optimization algorithm (GWO) to optimize support vector regression (SVR) to achieve Chl-a concentration prediction. The ant colony optimization algorithm is improved to select remote sensing feature bands for Chl-a concentration by introducing relevant optimization strategies. The GWO-SVR model is built by optimizing SVR using GWO with the selected feature bands as input and comparing it with the traditional SVR model. The results show that the usage of feature bands selected by the presented A-ACEO algorithm as inputs can effectively reduce complexity and improve the prediction performance of the model, under the condition of the same model, which can provide valuable references for monitoring the Chl-a concentration in Wuliangsu Lake.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.