Abstract
Manure amendments to agricultural soils is an excellent opportunity for sustainable utilization of agricultural waste while providing multiple benefits to improve soil quality and increase the availability of nutrients to plants, including phosphorus (P). In this study, a meta-analysis of published data from 411 independent observations based on 133 peer-reviewed papers was performed for an in depth understanding of various factors affecting the transformation of soil P pools with manure application. Manure application increased all soil inorganic P (Pi) by 58.0%–282% and organic P (Po) by 65.0%–105%, while decreasing Po/total P (TP), compared to those in unamended soils. Manure types, soil TP, and manure application rates were the important factors that influenced soil P fractions. Elevation of soil labile Pi was more pronounced with compost application, while poultry and pig manure were more beneficial for promoting soil Pi fractions and stable Po contents compared with other manure types. The manure application rate had pronounced effect on increasing the stable Po fractions. The effects of manure application on increasing soil P fractions were greater in soils with lower TP contents as compared to that in high TP soils. Manure effects on enhancing soil labile Pi and moderately labile Pi were greater in acidic soil than that in neutral and alkaline soils. In addition, soil P fractions showed significant correlation with latitude and mean annual precipitation (MAP). By integrating the impacts of manure types, soil properties, and climate, this meta-analysis would help to develop the management of manure application in a specific region of agriculture as well as promote the interpretation of the interfering factors on the soil P fractions changes in the manure-amended soils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.