Abstract

An electrochemical sensor is described for the simultaneous voltammetric determination of ascorbic acid (AA), dopamine (DA), anduric acid (UA). An indium-tin oxide (ITO) electrode was modified with a hierarchical core-shell metal-organic framework and Ag-doped mesoporous metal-oxide based hybrid nanocomposites on g-C3N4 nanosheets. The morphology, structural and chemical composition of the hybrid nanocomposite was characterized using different analytical methods. The modified ITO showed superior electrocatalytic performance towards the oxidation of AA, DA and UA due to the enhanced surface area, synergistic effects and well-organized porous assembly. Figures of merit, include (a) linear responses from 0.1 to 200μM, 2.5 to 100μM and 2.5 to 625μM; (b) detection limits (at S/N= 3) of 0.02, 0.01 and 0.06μM, and (c) well separated oxidation peaks near -50, 186 and 390mV (vs. Ag/AgCl) for simultaneous sensing AA, DA and UA, respectively. The sensor was evaluated by analysing spiked serum samples and gave data with precision, with recoveries of >98%. Graphical abstractSchematic Representation of a Mesoporous Silver-doped TiO2-SnO2 Nanocomposite (h-ATS) on g-C3N4 Nanosheets and Decorated with a HierarchicalCore-Shell Metal-Organic Framework (NC@GC) Based Electrochemical Sensor for Simultaneous Voltammetric Detection of Ascorbic acid, Dopamine and Uric acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.