Abstract
To develop a miniature complete blood count (CBC) analyzer for point-of-care testing (POCT), a MEMS CBC sensor based on the impedance method is discussed. A novel MEMS CBC sensor that is fabricated through a simple photolithography process using SU-8 is realized. However, the fabricated sensor exhibits a noisy output signal due to electrolysis gas. The relationship between the noise and the gas is revealed through microscopic observation and finite element method (FEM) simulation. To solve the problem of electrolysis gas, an improved MEMS CBC sensor with vanes is developed. The improved sensor is unaffected by electrolysis gas. Moreover, the signal stability of the sensor and the signals detected for latex particles are successfully evaluated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.