Abstract

To provide a time- and cost-saving alternative to the conventional methods for virus detection in biological media, this work presents an electrochemical micro-immunosensor based on the nickel hexacyanoferrate (NiHCF) redox mediator film coating the interdigitated microelectrodes (IDMEs). By chelation binding with no additional cross-linker, the 6xHis-tagged antibodies were immobilized on a NiHCF film. Secondly, an immunoassay response was enhanced by employing microbeads coated with 6xHis antibody. The electrochemical properties and the stability of the NiHCF film modified IDMEs were evaluated by cyclic voltammetry. The bead-induced impedance variations at the electrode film/electrolyte interface were characterized by electrochemical impedance spectroscopy and verified using FEM simulation. Experiments of virus detection were conducted through targeting the antigens of the vital infectious salmon viruses, such as infectious salmon anaemia virus, infectious pancreatic necrosis virus and salmonid alphavirus subtype 3. The micro-immunosensor exhibited detection limits as low as 10 pg ml−1 and detection sensitivities as high as 57.5 kΩ µM−1 within a physiological saline solution. Tests for multiple antigen–antibody interactions showed good detection specificity, as confirmed by ELISA. By incorporating the microfluidic network, electrochemical impedance micro-immunosensing units can be realized in a fully integrated platform for multiplex virus detection in tissue samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.