Abstract

A linear, physiologically based, three-dimensional finite element model of the cochlea is developed. The model integrates the electrical, acoustic, and mechanical elements of the cochlea. In particular, the model includes interactions between structures in the organ of Corti (OoC), piezoelectric relations for outer hair cell (OHC) motility, hair bundle (HB) conductance that changes with HB deflection, current flow in the cross section and along the different scalae, and the feed-forward effect. The parameters in the model are based on guinea-pig data as far as possible. The model is vetted using a variety of experimental data on basilar membrane motion and data on voltages and currents in the OoC. Model predictions compare well, qualitatively and quantitatively, with experimental data on basilar membrane frequency response, impulse response, frequency glides, and scala tympani voltage. The close match of the model predictions with experimental data demonstrates the validity of the model for simulating cochlear response to acoustic input and for testing hypotheses of cochlear function. Analysis of the model and its results indicates that OHC somatic motility is capable of powering active amplification in the cochlea. At the same time, the model supports a possible synergistic role for HB motility in cochlear amplification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.