Abstract

The flow of highly viscous fluids in pipeline fittings has previously been of little interest to mechanical engineers. More recently it has become more topical because design methods for emergency pressure relief systems on polymerization reactors need to be improved. The abrupt enlargement is of particular importance in this respect, because it regularly occurs on pipeline systems and is also an integral component part of other pipeline fittings such as orifice plates and valves. The energy loss mechanisms that occur in an abrupt enlargement will therefore occur in many other pipeline fittings. A semi-empirical, mechanistic approach was used to develop a simple, one-dimensional flow model that allowed these energy loss mechanisms to be understood. The energy loss predictions from the model compared well with data available in the open literature. The model was used to generate some simple design equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.