Abstract

AbstractThe reaction between the simplest nitro compound HNO2 (hydrogen nitryl) and acetylene HCCH ‐ formally proceeding via 1,3‐dipolar cycloaddition ‐ has been studied by means of the B3LYP, MPW1K and MP2 methods. The energy barrier of 20.74 ÷ 32.91 kcal/mol is similar to ΔEa of the NNO + HCCH process but is essentially larger than computed for the reactions of HCCH with fulminic acid (HCNO) and NNCH2. Whole process is exothermic with the reaction energy: −10.87 ÷ −17.94 kcal/mol. An evolution of the chemical bonding has been analyzed by means of the Bonding Evolution Theory (BET) at the B3LYP/6‐31+G(d) and B3LYP/cc‐pVTZ levels. Two approximations of the reaction path have been considered, namely: the IRC and pseudo‐reaction paths. The reaction requires five steps and seven catastrophes of the fold and cusp type. A different effect of first fold catastrophe has been noticed. At the B3LYP/6‐31+G(d) level one of two nonbonding Vi=1,2(N) attractors is annihilated (F), meanwhile at B3LYP/cc‐pVTZ new V(N) attractor is created (F†). The chemical bonds are not formed/broken in TS. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.