Abstract

Several theorems go by this name. The present note adds to the assortment an unusual variant (Theorem 1), which involves the shape of the underlying region in an interesting way. We work in Euclidean spaces, although Lemma 2 and the second inequality of Lemma 3 carry over to general Riemannian manifolds. V and I I denote gradient and norm with respect to the standard inner product , and d stands for boundary. All our functions are real-valued. A gradient curve of a function f is an integral curve of Vf.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.