Abstract

Gribov's observation that global gauge fixing is impossible has led to suggestions that there may be a deep connection between gauge fixing and confinement. We find an unexpected relation between the topological nontriviality of the gauge bundle and colored states in SU (N) Yang–Mills theory, and show that such states are necessarily impure. We approximate QCD by a rectangular matrix model that captures the essential topological features of the gauge bundle, and demonstrate the impure nature of colored states explicitly. Our matrix model also allows the inclusion of the QCD θ-term, as well as to perform explicit computations of low-lying glueball masses. This mass spectrum is gapped. Since an impure state cannot evolve to a pure one by a unitary transformation, our result shows that the solution to the confinement problem in pure QCD is fundamentally quantum information-theoretic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.