Abstract

This paper presents a mathematical modeling approach by which to solve the power flow and state estimation problems in electric power systems through a mathematical programming language (AMPL). The main purpose of this work is to show the advantages of representing these problems through mathematical optimization models in AMPL, which is a modeling language extensively used in a wide range of research applications. The proposed mathematical optimization models allow for dealing with particular issues in that they are not usually considered in the classical approach for power flow and state estimation, such as solving the power flow problem considering reactive power limits in generation buses, as well as the treatment of errors in state estimation analysis. Furthermore, the linearized mathematical optimization models for both problems at hand are also presented and discussed. Several tests were carried out to validate the proposed optimization models, evidencing the applicability of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.