Abstract
The cell differentiation in multicellular eukaryotes is one of the most curious phenomena. The recent gene and genome sequencing reveals that most of differentiated cells in a multicellular eukaryote carry a common genome and that such a genome contains the expanded repertoire of genes of proteins associated with the cell-cell adhesion, intercellular and intracellular signal transduction and transcriptional regulation. The cell differentiation occurs in the assembly consisting of a large number of cells after the cell proliferation, and this process is regarded as a stochastic process. Its formulation starts with the master equation in the present paper. The cell differentiation is reproduced in the equation of the most probable path derived from the master equation, when the short-range and long-range interactions between the cells as well as the transition probability between the proliferation and differentiation modes are considered. Moreover, the equation of the most probable path explains the experimental results such as the “memory”, tissue culture and the preparation of induced pluripotent stem (iPS) cells in embryology, if the long-range interaction is considered to be the regulation of gene transcription under the influence of intracellular signal transduction from the receptor accepting the ligand secreted by other types of cells and the short-range interaction is considered to stabilize the intracellular signal transduction by the contact between the same type of cells. The “organizer” found in the initial development of embryo is also explained as the cells that preferentially express the specific gene of a ligand to rouse the long-range interaction. In conclusion, the present study proposes that the complicated intercellular and intracellular signal transduction causing the cell differentiation is ascribed to the long-range interaction between distinctive types of cells and the short-range interaction between the same type of cells.
Highlights
The descriptive embryology sketches a broad outline of the early stages of development, recognizing two basic phenomena; the arising of differences between the various parts of the living matter and the moulding of a mass of tissues into a coherent structure
The cell differentiation is reproduced in the equation of the most probable path derived from the master equation, when the short-range and long-range interactions between the cells as well as the transition probability between the proliferation and differentiation modes are considered
The equation of the most probable path explains the experimental results such as the “memory”, tissue culture and the preparation of induced pluripotent stem cells in embryology, if the long-range interaction is considered to be the regulation of gene transcription under the influence of intracellular signal transduction from the receptor accepting the ligand secreted by other types of cells and the short-range interaction is considered to stabilize the intracellular signal transduction by the contact between the same type of cells
Summary
The descriptive embryology sketches a broad outline of the early stages of development, recognizing two basic phenomena; the arising of differences between the various parts of the living matter and the moulding of a mass of tissues into a coherent structure. Cell differentiation underlies the former phenomenon and the latter phenomenon is called “morphogenesis”. The transduction pathways are not linear relay chains but instead branch to activate many interacting components that operate in parallel, forming interconnected signal network This complexity prevents the genetic and biochemical studies from outlining the essential future of cell differentiation, requiring a theoretical approach to the cell differentiation. The equation of the most probable path obtained reproduces the cell differentiation and explains most of experimental results concerning the cell differentiation, indicating the important role of the short-range interaction as well as the long-range interaction caused by ligand-receptor relationship in the cell differentiation
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.