Abstract

Background and objectivePeristaltic is one of the most frequently occurring phenomenon in biological systems. These systems of the human body (especially digestive, reproductive, respiratory, renal system) generally involve effects of curvature, porosity, rheology and heat transfer. Thus, in the present investigation we integrate heat transfer phenomenon with Sisko fluid flowing through porous medium bounded within curved wavy walls. The theoretical analysis presented under long wavelength approximation serves as a model for the creeping non-isothermal flow of blood through a diseased segment of the artery due to vasomotion (peristaltic motion) in the artery. MethodsThe highly nonlinear ordinary differential equation with appropriate boundary conditions is solved using a well-tested implicit finite difference scheme. A comparison of velocity profile for Newtonian, power-law and Sisko fluids is also presented. ResultsThe Sisko model predict higher values of velocity in the central core region than power-law and Newtonian model. The size of circulating bolus of fluid reduces with increasing permeability parameter. The symmetry in velocity and streamlines pattern is observed when dimensionless radius of curvature becomes very large.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.