Abstract

A mathematical analysis of the relationship between the flux of water, f H2O, and the flux of potassium f K, to the xylem of exuding root systems of Ricinus communis, is presented. Previous analyses (Baker and Weatherley, 1969; Minchin and Baker, 1969) have indicated the presence of a water dependent and a water independent f K both of which vary with the external concentration of potassium, Cm, supplied as potassium nitrate.The present analysis reveals that whereas at Cm values<1 mM both components of f K contribute ions to the osmotically active solutions within the osmotic barrier, at Cm values>1 mM only the water dependent f K is responsible for the osmotic work. This suggests that the ions are released within different regions of the stele. It is proposed that at cm values<1 mM both components are released from the inner stelar tissues whilst at higher Cm values the water dependent f K is released from the outer stelar tissues. This requires that the solute permeability of the plasmalemma of the outer stelar tissues increases markedly at or about Cm values of 1 mM.It is postulated that the required separation of the two f K components within the stelar symplasm at Cm values>1 mM is due to the water independent f K being in a bound state, possibly being transported along a chain of binding sites whilst the water dependent f K is in a free state within the aqueous phase of the cytoplasm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.