Abstract

In this paper, helices of a generalized Oldroyd-B fluid have been analyzed through a horizontal circular pipe. The circular pipe is taken in the form of a circular cylinder. The analytical solutions are determined for velocities and shear stresses due to the unsteady helical flow of a generalized Oldroyd-B fluid. The general solutions are derived by using finite Hankel and discrete Laplace transforms to satisfy the imposed conditions and the governing equations. The special cases of our general solutions are also perused performing the same motion for fractional and ordinary Maxwell fluid, fractional and ordinary second-grade fluid and fractional and ordinary viscous fluid as well. The graphical illustration is depicted in order to explore how the two velocities and shear stresses profiles are impacted by different rheological parameters, for instance, fractional parameter, relaxation time, retardation time, material non-zero constant, dynamic viscosity and few others. Finally, ordinary and fractional operators have various similarities and differences on a circular pipe for helicoidal behavior of fluid flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.