Abstract

Abstract A mathematical study of an Oldroyd 4-constant fluid for a blade coating process is studied in this paper. The results for plane as well as exponential coaters are analyzed. Suitable dimensionless variables are used to convert the model governing equations into dimensionless form. Lubrication approximation theory is applied to simplify the dimensionless form of governing partial differential equations. The well-known numerical technique known as the shooting method is used to solve the non-linear boundary value problem. Influence of the involved rheological parameters on the blade coating process is analyzed. From an engineering point of view, load on the blade and pressure are important outcomes of the present study as they ensure the thickness and quality of coating and enhance the life of the substrate. The effects of material parameters on load, thickness, velocity, pressure and pressure gradient are discussed. Obtained results for velocity, pressure gradient and pressure distribution are shown graphically, whereas load and thickness are expressed in a tabulated form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.