Abstract

In this paper, we develop a $\mathcal{C}^0$ interior penalty method for a fourth order singular perturbation elliptic problem in two dimensions on polygonal domains. Using some a posteriori error analysis techniques, we are able to show that the method converges in the energy norm uniformly with respect to the perturbation parameter under minimal regularity assumptions. In addition, we analyze the convergence of the numerical solution to the unperturbed second order problem. Finally, we perform some numerical experiments that back up the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.