Abstract

Diamond wire sawing (DWS) of silicon wafers has replaced loose abrasive sawing (LAS) within a very short time, mainly due to the enormous cost pressure in the photovoltaic industry. However, the LAS process is still much better investigated and understood from a mechanics point of view. This lack of micromechanically substantiated process knowledge is a major challenge in optimisation for a reliable process and the associated improvement in the quality of the products. The present work aims to contribute to this field by deriving a material removal coefficient that can be used at the process level in well-established material removal laws such as the Preston or Archard equation. The results show that the removal coefficient calculated on the basis of finite element simulations indicates a significant increase in material removal for common DWS sawing conditions in comparison to LAS, which is in good agreement with experimental findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.