Abstract

The molecular and ionic sublimation of lutetium tribromide under thermodynamic equilibrium (Knudsen effusion) conditions and from the open surface of a LuBr3 single crystal (Langmuir conditions) was studied by high-temperature mass spectrometry. Vapor contained the LuBr3, Lu2Br6, Lu3Br9, and Lu4Br12 molecules and the Br−, LuBr4 −, Lu2Br 7 − , and Lu3Br 10 − negative ions. The partial pressures of the molecules in saturated vapor and the ratio between the sublimation coefficients of monomers and dimers under free vaporization conditions were determined. The degree of the electron impact-induced fragmentation of LuBr3 molecules under Knudsen and Langmuir sublimation conditions was analyzed. The second and third laws of thermodynamics were used to calculate the enthalpies of sublimation in the form of monomers and oligomers (Knudsen vaporization) and the corresponding activation energies of sublimation (Langmuir vaporization). Ion—molecular equilibria with the participation of negative ions were studied. The enthalpies of formation of molecules and ions in the gas phase were obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.