Abstract

During the service life of Tension Leg Platform (TLP), it may be exposed to various risk, with mooring failure being one of the most catastrophic events. Resilience, as an integrated assessment philosophy, can evaluate the overall post-event response performance and further improve system's operation safety. In this paper, a Markov resilience assessment framework for TLP under mooring failure is firstly proposed. The failure process and recovery process are mathematically described by Markov process and continuous-time Markov process, respectively. The internal and external effect has been taken into account, including extreme environment, structural degradation, recovery process schedule and structural strength etc. The resilience assessment framework is developed by 2 aspects, including robustness and recovery resilience. Besides, an illustrative example is developed as a walk-through of proposed methodology. The applications here demonstrate the versatility of the Markov framework towards handling resilience problems with varying levels of complexity, especially the offshore structure systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.