Abstract

A rapid technique allowing the accurate determination of stomach emptying rate (SER) would be useful for understanding the process of digestion. The development of a rapid magnetic resonance spectroscopy (MRS) technique based on the marker AlCl3-6H2O (Al-MRS) to determine the real-time SER of foods in a rat model is described. Experiments were conducted to establish several variables for the Al-MRS technique and validate the technique against the traditional serial slaughter method. Overnight feed-deprived rats (n = 8/treatment) were gavaged with a single dose of a semisynthetic meat or soy bean protein isolate-based diet containing the marker AlCl3-6H2O in acidified water (pH 2). Rats were either placed individually in the magnetic resonance spectrometer to estimate the SER from the real-time decrease in the aluminum (Al) signal or killed and their stomach chyme collected at prescribed times postprandially to determine the SER. The concentration of diet in the gavage mixture did not influence the SER. In contrast, rat body weight (BW), gavage volume, and dietary marker concentration affected SER (P < 0.05). The optimal BW range, gavage volume, and marker concentration that gave repeatable SER values were 280–320 g, 2–4 mL, and 55 g/L, respectively. Correlations were found for SER between Al-MRS and serial slaughter methods (r = 0.81–0.95; P < 0.001). Al-MRS is a robust, rapid, and straightforward technique for predicting the SER of food.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.