Abstract

We have devised a technique of manufacturing temperature sensor calibration devices based on the magnetic properties of the pseudobinary compounds of formula (RxR1−x′)Co2, where R and R′ are heavy rare earth elements. The device is a solid sensor which provides an easily detectable first order magnetic phase transition at fixed temperature points. It is known that a first order magnetic phase transition from ferrimagnetism to paramagnetism is observed in compounds as TmCo2 (3.70 K), ErCo2 (32.05 K), HoCo2 (77.12 K), and DyCo2 (136.55 K). These transitions correspond to a large anomaly in the characteristic properties as function of temperature. In this work, we present the electrical resistivity and magnetization measurements of (Er, Ho)Co2 series and DyCo2 compounds showing the viability of the proposed devices from 32.05 up to 136.55 K. This range can be extended below and above by substitution of the chemical components and the stoichiometric composition. The number of transitions can be fixed by a convenient arrangement of several elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.