Abstract

BackgroundHeart failure is one of the leading causes of hospitalization in the United States. Advances in big data solutions allow for storage, management, and mining of large volumes of structured and semi-structured data, such as complex healthcare data. Applying these advances to complex healthcare data has led to the development of risk prediction models to help identify patients who would benefit most from disease management programs in an effort to reduce readmissions and healthcare cost, but the results of these efforts have been varied. The primary aim of this study was to develop a 30-day readmission risk prediction model for heart failure patients discharged from a hospital admission.MethodsWe used longitudinal electronic medical record data of heart failure patients admitted within a large healthcare system. Feature vectors included structured demographic, utilization, and clinical data, as well as selected extracts of un-structured data from clinician-authored notes. The risk prediction model was developed using deep unified networks (DUNs), a new mesh-like network structure of deep learning designed to avoid over-fitting. The model was validated with 10-fold cross-validation and results compared to models based on logistic regression, gradient boosting, and maxout networks. Overall model performance was assessed using concordance statistic. We also selected a discrimination threshold based on maximum projected cost saving to the Partners Healthcare system.ResultsData from 11,510 patients with 27,334 admissions and 6369 30-day readmissions were used to train the model. After data processing, the final model included 3512 variables. The DUNs model had the best performance after 10-fold cross-validation. AUCs for prediction models were 0.664 ± 0.015, 0.650 ± 0.011, 0.695 ± 0.016 and 0.705 ± 0.015 for logistic regression, gradient boosting, maxout networks, and DUNs respectively. The DUNs model had an accuracy of 76.4% at the classification threshold that corresponded with maximum cost saving to the hospital.ConclusionsDeep learning techniques performed better than other traditional techniques in developing this EMR-based prediction model for 30-day readmissions in heart failure patients. Such models can be used to identify heart failure patients with impending hospitalization, enabling care teams to target interventions at their most high-risk patients and improving overall clinical outcomes.

Highlights

  • Heart failure is one of the leading causes of hospitalization in the United States

  • We describe the development of a risk prediction model using structured and unstructured electronic medical record (EMR) data to predict the risk of 30-day readmission in heart failure affects (HF) patients, capitalizing on admission data available at discharge

  • Heart failure relevant well-known factors mapping Our prediction model used WKFs relevant to HF according to the American College of Cardiology Foundation (ACCF) and American Heart Association (AHA) guidelines, and a previous study by Sun J et al [16, 17]

Read more

Summary

Introduction

Heart failure is one of the leading causes of hospitalization in the United States. Advances in big data solutions allow for storage, management, and mining of large volumes of structured and semi-structured data, such as complex healthcare data. As of 2013, heart failure affects (HF) 5.7 million Americans with annual costs of $30.7 billion [1] It is one of the leading causes of hospitalization in the United States (US), in patients aged 65 years and above [2]. 1 in 4 heart failure patients are readmitted within 30 days of discharge, and risk-adjusted all-cause readmission rates declined only slightly from 2009 (20%) to 2012 (19%) in Medicare beneficiaries [3] In recognition of this troubling trend, the Center for Medicare & Medicaid Services (CMS), the largest payer for medical services in the US, instituted penalties for hospitals with excess readmissions for heart failure. As of 2013, the rate of all-cause readmission for heart failure index admissions was still 23.5%, the highest rate of readmission following an index stay for a high-volume condition (higher than that for chronic obstructive pulmonary disease (20.0%), pneumonia (15.5%), and acute myocardial infarction (14.7%) [6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.