Abstract

There is a limited evaluation of an independent linguistic battery for early diagnosis of Mild Cognitive Impairment due to Alzheimer’s disease (MCI-AD). We hypothesized that an independent linguistic battery comprising of only the language components or subtests of popular test batteries could give a better clinical diagnosis for MCI-AD compared to using an exhaustive battery of tests. As such, we combined multiple clinical datasets and performed Exploratory Factor Analysis (EFA) to extract the underlying linguistic constructs from a combination of the Consortium to Establish a Registry for Alzheimer’s disease (CERAD), Wechsler Memory Scale (WMS) Logical Memory (LM) I and II, and the Boston Naming Test. Furthermore, we trained a machine-learning algorithm that validates the clinical relevance of the independent linguistic battery for differentiating between patients with MCI-AD and cognitive healthy control individuals. Our EFA identified ten linguistic variables with distinct underlying linguistic constructs that show Cronbach’s alpha of 0.74 on the MCI-AD group and 0.87 on the healthy control group. Our machine learning evaluation showed a robust AUC of 0.97 when controlled for age, sex, race, and education, and a clinically reliable AUC of 0.88 without controlling for age, sex, race, and education. Overall, the linguistic battery showed a better diagnostic result compared to the Mini-Mental State Examination (MMSE), Clinical Dementia Rating Scale (CDR), and a combination of MMSE and CDR.

Highlights

  • ObjectivesOur goal was to employ an explainable method of analyses parallel to the more complex Support Vector Machines (SVM) algorithm

  • Compared to the male patients, there was a higher number of female patients in both the Mild Cognitive Impairment due to Alzheimer’s disease (MCI-AD) (58.8%) and the control groups (58.2%)

  • The Clinical Dementia Rating Scale (CDR) was higher in the MCI-AD (0.12±0.22) compared to the control group (0.05±0.17)

Read more

Summary

Objectives

Our goal was to employ an explainable method of analyses parallel to the more complex SVM algorithm

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.