Abstract
Understanding aging of tooth tissues is critical to the development of patient-centric oral healthcare. Yet, the traditional methods for analyzing the composition–structure–property relationships of hard tissues have limitations when considering aging and other factors. ObjectiveTo apply unsupervised machine learning tools to pursue an understanding of relationships between the composition and mechanical behavior of aging enamel. MethodsMolar teeth were collected from primary (age ≤ 8), young adult (24 ≤ age ≤ 46) and old adult (55 ≤ age) donors. The hardness and elastic modulus were quantified using nanoindentation as a function of distance from the Dentin Enamel Junction (DEJ) within the cervical, cuspal and inter-cuspal regions of the enamel crown. Similarly, a co-located analysis of the chemical composition and structure was performed using Raman spectroscopy. A Self-Organizing Maps (SOMs) algorithm was implemented to identify multi-dimensional composition–property relationships. ResultsThe hardness and elastic modulus are positively correlated to crystallinity and negatively correlated with carbonate substitution. Furthermore, the effects from fluoridation on the age-dependent properties of enamel is non-linear and depends on its location. The contributions of fluoridation to the enamel properties are different in the cervical and non-cervical regions and appear to be unique within primary and senior adult teeth. SignificanceBased on the findings, unsupervised learning methods can reveal complicated non-linear structure–property relationships in tooth tissues and help to understand the materials science of aging and its consequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.