Abstract
The intricate problem of energy conservation in wireless ad hoc networks is of great significance due to the limited battery capacity of the participating mobile devices. However, the simulation studies carried out for table-driven, on-demand, and cluster-based ad hoc routing protocols fall short of examining essential power-based performance metrics, such as average node and network lifetime, energy-based protocol fairness, average dissipated energy per protocol, and standard deviation of the energy dissipated by each individual node. In this paper, we present a thorough energy-based performance study of power-aware routing schemes for wireless mobile ad hoc networks. Our energy consumption model is based on a detailed implementation of the IEEE 802.11 physical layer convergence protocol (PLCP) and medium access control (MAC) sublayers. To our best knowledge, this is the first such detailed performance study. Some implications for power-efficient protocol design In ad hoc wireless networks are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.