Abstract

This paper considers a boundary stabilization problem of an unstable heat system incorporated with spatial and temporal varying coefficients subjected to boundary uncertainties. The system model is governed by a second-order parabolic partial differential equation (PDE). By taking the Volterra integral transformation, we can obtain a target PDE with asymptotic stability characteristics in the new coordinates when an appropriate backstepping boundary control input is applied. The implicated backsteeping control law can be further integrated into the matched boundary disturbance. The associated Lyapunov function can then be used for designing an in nite-dimensional sliding surface, on which the system exhibits exponential stability, invariant of the bounded matched disturbance. Based on the Lyapunov method, a second-order sliding-mode boundary control, constructed by the integration of discontinuous signal, is employed to maintain the robustness to matched boundary disturbance. The closed-loop stability of the controlled system is also verified. Simulation results are provided to demonstrate the feasibility of this proposed control scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.