Abstract
With the explosive growth of lung diseases in patients, automatically detecting diseases and obtaining accurate diagnosis through the X-ray medical images become the new research focus in the field of computer science and artificial intelligence to save the significant cost of manual labeling and classifying. However, the quality of common radiograph is not satisfied for the most tasks, and traditional methods are deficient to deal with the massive images. Therefore, we present a feature fusion convolutional neural network (CNN) model to detect pneumothorax from chest X-ray images. Firstly, the preprocessed image samples are enhanced by two methods. Then, a feature fusion CNN model is introduced to combine the Gabor features with the enhanced information extracted from the images and implement the final classification. Comprehensive qualitative and quantitative experiments demonstrate that our proposed model achieve better results in multi-angle views.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.