Abstract

In many electronic applications, the dielectric and structural properties of reinforced composites are vital. In this research work, the influence of fiber proportion on the properties of a silica fiber/epoxy (SFE) composite was investigated. The structure, morphology, dielectric constant and loss factor, mechanical properties, and thermal stability were determined. The increase of wt.% of silica fiber (SiO2 (f)) x = 30 to 90, reduced the dielectric constant (εr) and dielectric loss (δ) of the SFE composite from their original values to 18.9% and 48.5%, lowering local charge displacement towards the applied electric field. The SFE composite showed higher mechanical properties with the increase in SiO2 (f), x = 30 to 80, the tensile strength (UTS) was raised from 91.6 MPa to 155.7 MPa, the compression strength (UCS) was increased from 261.1 MPa to 409.6 MPa and the flexural strength was enhanced from 192.3 MPa to 311.9 MPa. Upon further addition of SiO2 (f) to the composite, i.e., x = 90, the mechanical properties were reduced a little, but the dielectric properties were not changed. Increasing SiO2 (f) improved the thermal stability as weight loss was found to be 69% (x = 30) and 24% (x = 90), and average moisture absorption was found to be 1.1 to 1.8%. A silica fiber/epoxy composite, for microelectronics, can be made from a low-cost fiber, and its dielectric properties as well as its mechanical and thermal stability can be tuned or improved by varying fiber fractions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.