Abstract

Sensitively, accurately, and rapidly evaluating edible oils’ peroxide value (PV) is significant for safeguarding food quality and safety. However, the conventional detection methods are challenging to meet the above demands due to their complex operation, poor reproducibility, and professional personnel. The colorimetric method is an emerging technique to rapidly and on-site determine the PV of edible oils. CsPbBr3 NCs, as a novel fluorescent-sensing material, have been applied in the chemical colorimetric analysis. However, the heavy use of high-toxic solvents (toluene, chloroform) in the CsPbBr3 NCs colorimetric system significant-negatively influences the environment. This study evaluated the performances of CsPbBr3 NCs in nine low-toxic solvents and investigated the potential response mechanism to PV. The results presented that CsPbBr3 NCs in ethyl acetate displayed the highest photoluminescent intensity and the most uniform distribution. The results performed that the micro-morphology and crystal structure of CsPbBr3 NCs in ethyl acetate were similar to that in toluene, demonstrating the potential excellent performance. Under optimum conditions, three methods, including photoluminescence (PL)-decreased, wavelength-shifted, and phone-based colorimetric methods, were established to evaluate PV with the LOD of 0.0034 g/100 g. The PV recovery rates in Soybean oil, Camellia oil, Linseed oil, and Olive oil were from 75.0% to 100.0%, with a relative error below 25%. Furthermore, it was believed that the decreased PL and shifted wavelength originated from the halogen substitution with the crystal-structure destructions and the surface-defect formations. Thus, developing the low-toxic colorimetric CsPbBr3 NCs system with ethyl acetate could reduce the environmental influence and even enlighten the rise of other green detection methods for PV in edible oils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.