Abstract

aB stract An approximate low-temperature, metastable phase diagram is drawn for the system (1 – X) Fe2O3-(X)FeTiO3. It is based on published and new magnetic data from nine synthetic samples with bulk compositions in the range 0.6 < X < 1.0. Fields are plotted for (1) the paramagnetic phase (PM); the Fe2O3-rich ferrimagnetic phase (FM); (2) the FeTiO3-rich antiferromagnetic phase (AF); and (3) a re-entrant spin-glass phase (RSG). In addition, two subfields are plotted: (1) FM′, a subfield of the FM-phase, which occurs below a characteristic temperature TK, at which the magnetic susceptibility drops sharply on cooling, and (2) PM′, a subfield of the PM-phase (traditionally called superparamagnetic) forms below a sharp rise in susceptibility at TS, and exhibits measurable dispersion in the magnetic susceptibility at T < TS. The diagram is drawn with a bicritical point, Tλλ′, at X ≈ 0.87, T ≈ 39 K, which is the intersection of second-order magnetic phase boundaries for the paramagnetic → ferrimagnetic [PM(PM′) → FM] transition, TC(X), and the PM(PM′) → AF transition, TN(X). In addition, the RSG phase is plotted as one of four stable phases at Tλλ′, a construction that is not required by the phase rule, but is strongly favored by the physics of competition between the incompatible magnetically ordered structures of the FM- and AF-phases. These phase relations are at such low temperature as to be of little consequence for terrestrial magnetism, however, they may well be essential for interpreting the magnetism of the Moon, Mars, and other cold planets. These phase relations are also essential for the characterization of fine natural and synthetic intergrowths, and for understanding magnetic materials for low-temperature technologi cal applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.