Abstract

Wireless body area network (WBAN) applications benefit extensively from the advantages offered by unique features of ultra-wideband (UWB) wireless communication, such as high data rate, low power consumption, and simple transmitter design. A major disadvantage in using UWB for WBAN applications is the complexities introduced by UWB receivers, such as high power consumption, poor receiver performance due to low sensitivity, and complex hardware implementation. This paper presents hardware implementation of a new communication system, where UWB is used for high data-rate transmission from sensor nodes and a 433-MHz industrial, scientific, and medical (ISM) band receiver is used for receiving low data-rate control messages at the sensor nodes. A full network system for WBAN applications has been implemented including a unique medium access control protocol. The proposed WBAN system is designed to dynamically control the pulses per bit value used for the UWB data communication using control messages received via the narrowband feedback link (i.e., the 433-MHz ISM link). This leads to dynamic bit error rate (BER) and power control at the sensor nodes, which improves the reliability of communication and power efficiency of sensor nodes under dynamic channel conditions. The performance of the system is evaluated in terms of BER, sensor initialization delay, and power consumption. This novel dual-band architecture utilizes the unique advantages offered by UWB communication and narrowband technology to enable high data rate, low-complexity hardware design, low power consumption, and small form factor for WBAN sensor systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.