Abstract

This paper introduces a low-order discontinuous Petrov-Galerkin (dPG) finite element method (FEM) for the Stokes equations. The ultra-weak formulation utilizes piecewise constant and affine ansatz functions and piecewise affine and discontinuous lowest-order Raviart–Thomas test search functions. This low-order discretization for the Stokes equations allows for a direct proof of the discrete inf-sup condition with explicit constants. The general framework of Carstensen et al. (SIAM J Numer Anal 52(3):1335–1353, 2014) then implies a complete a priori and a posteriori error analysis of the dPG FEM in the natural norms. Numerical experiments investigate the performance of the method and underline its quasi-optimal convergence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.