Abstract

The problems of radiative transfer give rise to interesting integral equations that must be faced with efficient numerical solver. Very often the integral equations are discretized to large‐scale nonlinear equations and solved by Newton′s‐like methods. Generally, these kind of methods require the computation and storage of the Jacobian matrix or its approximation. In this paper, we present a new approach that was based on approximating the Jacobian inverse into a diagonal matrix by means of variational technique. Numerical results on well‐known benchmarks integral equations involved in the radiative transfer authenticate the reliability and efficiency of the approach. The fact that the proposed method can solve the integral equations without function derivative and matrix storage can be considered as a clear advantage over some other variants of Newton′s method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.