Abstract
This study develops a crossform CE microfluidic device in which a single-circular barrier or a double-circular barrier is introduced at the cross-channel intersection. Utilizing a conventional crossform injection scheme, it is shown that these barriers reduce sample leakage and deliver a compact sample band into the separation channel, thereby ensuring an enhanced detection performance. A series of numerical and experimental investigations are performed to investigate the effects of the barrier type and the barrier ratio on the flow streamlines within the microchannel and to clarify their respective effects on the sample leakage ratio and sample plug variance during the injection process. The results indicate that a single-circular barrier injector with a barrier ratio greater than 20% and a double-circular barrier injector with a barrier ratio greater than 40% minimize the sample leakage ratio and produce a compact sample plug. As a result, both injectors have an excellent potential for use in high-quality, high-throughput chemical analysis procedures and in many other applications throughout the micro-total analysis systems field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.