Abstract

A low-diffusion self-adaptive flux-vector splitting method is presented for the Euler equations. The flux-vector is here split into convective and acoustic parts following the formulation recently proposed by the authors. This procedure is based on the Zha-Bilgen (or previously Baraille et al. for the Euler barotropic system) approach enriched by a dynamic flow-dependent splitting parameter based on the local Mach number. As a consequence, in the present self-adaptive splitting, the convective and acoustic parts decouple in the low-Mach number regime whereas the complete Euler equations are considered for the sonic and highly subsonic regimes. The low diffusive property of the present scheme is obtained by adding anti-diffusion terms to the momentum and the energy components of the pressure flux in the acoustic part of the present splitting. This treatment results from a formal invariance principle preserving the discrete incompressible phase space through the pressure operator. Numerical results for several carefully chosen one- and two-dimensional test problems are finally investigated to demonstrate the accuracy and robustness of the proposed scheme for a wide variety of configurations from subsonic to highly subsonic flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.