Abstract
Evaluating traffic networks is crucial for administration of roadway systems, to better address congestion, safety, and air quality issues around the globe. However, challenges in implementation abound, including major investment costs, large and dynamic data streams and a need for real-time response. Recently developed Global Positioning System (GPS) data loggers are a promising tool for traffic monitoring, thanks to their low cost, ready availability on smartphones, and ability to simultaneously track many travelers and vehicles, relative to expensive, built-in traffic GPS. GPS data from many travelers provides real-time details of traffic conditions and can improve active traffic management using various big-data analytics. We demonstrate how to couple such GPS data to estimate relative roadway speeds in order to improve system management. By analyzing real-time traffic surveillance software with high data coupling and concurrent processing, a new coupling method for real-time traffic evaluation is proposed. Experimental results show efficient coupling of all available GPS data with road condition can improve traffic state estimation accuracy. This new method may increase matching accuracy by more than 1 m in vehicle position. Over 98% of GPS data can be successfully matched to service routes when the low-cost GPS devices are used to detect real-time traffic conditions. The results of traffic network evaluation could well serve as a driving assistant for connected and autonomous vehicles (C/AVs) and other traffic operations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Intelligent Transportation Systems Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.