Abstract

In this work, we propose a model with Lorentz symmetry violation which describes the electronic low energy limit of the AA-bilayer graphene (BLG) system. The AA-type bilayer is known to preserve the linear dispersion relation of the graphene layer in the low energy limit. The theoretical model shows that in the BLG system, a time-like vector can be associated with the layer separation and contributes to the energy eigenstates. Based on these properties, we can describe in a $(2+1)$-dimensional space-time the fermionic quasi-particles that emerge in the low-energy limit with the introduction of a Lorentz-violating parameter, in analogy with the $(3 + 1)$-dimensional Standard Model Extension (SME). Moreover, we study the consequences of the coupling of these fermionic quasi-particles with the electromagnetic field, and we show via effective action that the low-energy photon acquires a massive spectrum. Finally, using the hydrodynamic approach in the collisionless limit, one finds that the LSV generates a new kind of anomalous thermal current to the vortexes of the system via coupling of the LSV vector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.