Abstract

Purpose Pseudomonas aeruginosa is the most common bacteria causing endophthalmitis after cataract surgery. Vitreous fluid culture and molecular studies are commonly used in clinical diagnoses, but have disadvantages, such as a long culture cycle and low detection sensitivity. Here, we report a loop-mediated isothermal amplification (LAMP) method combined with the nanoparticles-lateral flow biosensor (LFB) method for rapid and specific detection of P. aeruginosa.MethodsA set of six primers was designed to target the OprL gene of P. aeruginosa. Genomic DNA extracted from several gram-negative and gram-positive bacteria was used to determine the sensitivity and specificity of the analysis. LAMP reactions were conducted at 65 °C for 50 minutes, and results were reported using the LFB method.ResultsThe DNA template of P. aeruginosa was specifically recognized by the P. aeruginosa-LAMP-LFB (PA-LAMP-LFB) method as no cross reactions were observed for non–P. aeruginosa templates. The analytical sensitivity of our assay was 100 fg per test for the pure cultured DNA template, and the result obtained using the LFB was consistent with that of colorimetric indicator detection. The whole test could be completed within 1h. This method was used to detect P. aeruginosa, Staphylococcus aureus, and Klebsiella pneumoniae; only P. aeruginosa was positive. The positive rates of P. aeruginosa detected by a traditional culture method, the LAMP-LFB method, and the fluorescence quantitative polymerase chain reaction method were 17.7%, 17.7%, and 13.3%, respectively.ConclusionsThe P. aeruginosa-LAMP-LFB method established here is a rapid, specific, and sensitive method for the detection of P. aeruginosa, which can be widely used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.