Abstract
ObjectivesTo develop a model of disease progression using multiple sclerosis (MS) as an exemplar. Study Design and SettingsTwo observational cohorts, the University of Wales MS (UoWMS), UK (1976), and British Columbia MS (BCMS) database, Canada (1980), with longitudinal disability data [the Expanded Disability Status Scale (EDSS)] were used; individuals potentially eligible for MS disease-modifying drugs treatments, but who were unexposed, were selected. Multilevel modeling was used to estimate the EDSS trajectory over time in one data set and validated in the other; challenges addressed included the choice and function of time axis, complex observation-level variation, adjustments for MS relapses, and autocorrelation. ResultsThe best-fitting model for the UoWMS cohort (404 individuals, and 2,290 EDSS observations) included a nonlinear function of time since onset. Measurement error decreased over time and ad hoc methods reduced autocorrelation and the effect of relapse. Replication within the BCMS cohort (978 individuals and 7,335 EDSS observations) led to a model with similar time (years) coefficients, time [0.22 (95% confidence interval {CI}: 0.19, 0.26), 0.16 (95% CI: 0.10, 0.22)] and log time [−0.13 (95% CI: −0.39, 0.14), −0.15 (95% CI: −0.70, 0.40)] for BCMS and UoWMS, respectively. ConclusionIt is possible to develop robust models of disability progression for chronic disease. However, explicit validation is important given the complex methodological challenges faced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.