Abstract

A carbonate mound in the Chesterian Bangor Limestone of Lawrence County, Alabama, consists chiefly of packstone and grainstone dominated by echinoderm ossicles and fragments of fenestrate bryozoans. In-situ colonies of the rugose coral Caninia flaccida comprise about 8% of the mound by volume. The exposed portion of the mound is approximately 25 m wide, 1.6 m thick at the thickest point and roughly circular in plan. The mound developed on top of a shallow ooid shoal that had been cemented and stabilised during an earlier episode of sub-aerial exposure. Subsequent flooding of the exposed shoal surface permitted establishment of the mound biota. Lateral and vertical facies relationships suggest that the mound possessed about 45 cm of synoptic relief when fully developed. Rugose corals, fenestrate and ramose bryozoans, stalked echinoderms, and sessile soft-bodied organisms encrusted by foraminifera colonised the shoal, forming a mound. Baffling resulted in deposition of mixed-fossil packstone containing locally derived debris and coated grains from the surrounding sea floor. Strong currents within the mound are indicated by preferred orientation of corals and by coarse, commonly cross-stratified grainstone in channels between neighboring coral colonies. Corals are most abundant on the windward side of the mound, where they account for about 13% of the mound compared to 6–10% in the central part of the mound, and 2–4% on the leeward flank. Biodetrital mounds such as the one described here are uncommon in upper Paleozoic strata and previously unknown in the Bangor Limestone. Of 10 carbonate buildups we examined in the Bangor in Alabama and Tennessee, only one is a biodetrital mound. Two are rugose coral–microbial reefs, one is a coral biostrome, and six are dominated by microbialite. The Bangor shelf, previously interpreted as sedimentologically simple, appears to contain many small mounds of quite varied characteristics. Also, the discovery of a biodetrital mound in the Chesterian of Alabama suggests that there may be more kinds of upper Paleozoic mounds than commonly acknowledged.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.